
Nature | Vol 590 | 4 February 2021 | 67

Article

Generating conjectures on fundamental 
constants with the Ramanujan Machine

Gal Raayoni1,4, Shahar Gottlieb1,4, Yahel Manor1,2,4, George Pisha1, Yoav Harris1, 
Uri Mendlovic3, Doron Haviv1, Yaron Hadad1 & Ido Kaminer1 ✉

Fundamental mathematical constants such as e and π are ubiquitous in diverse fields 
of science, from abstract mathematics and geometry to physics, biology and 
chemistry1,2. Nevertheless, for centuries new mathematical formulas relating 
fundamental constants have been scarce and usually discovered sporadically3–6. Such 
discoveries are often considered an act of mathematical ingenuity or profound 
intuition by great mathematicians such as Gauss and Ramanujan7. Here we propose a 
systematic approach that leverages algorithms to discover mathematical formulas for 
fundamental constants and helps to reveal the underlying structure of the constants. 
We call this approach ‘the Ramanujan Machine’. Our algorithms find dozens of well 
known formulas as well as previously unknown ones, such as continued fraction 
representations of π, e, Catalan’s constant, and values of the Riemann zeta function. 
Several conjectures found by our algorithms were (in retrospect) simple to prove, 
whereas others remain as yet unproved. We present two algorithms that proved useful 
in finding conjectures: a variant of the meet-in-the-middle algorithm and a gradient 
descent optimization algorithm tailored to the recurrent structure of continued 
fractions. Both algorithms are based on matching numerical values; consequently, 
they conjecture formulas without providing proofs or requiring prior knowledge of 
the underlying mathematical structure, making this methodology complementary to 
automated theorem proving8–13. Our approach is especially attractive when applied to 
discover formulas for fundamental constants for which no mathematical structure is 
known, because it reverses the conventional usage of sequential logic in formal 
proofs. Instead, our work supports a different conceptual framework for research: 
computer algorithms use numerical data to unveil mathematical structures, thus 
trying to replace the mathematical intuition of great mathematicians and providing 
leads to further mathematical research.

Throughout history, simple formulas of fundamental constants sym-
bolized simplicity, aesthetics and mathematical beauty2. A couple of 
well known examples include Euler’s identity eiπ + 1 = 0 and the contin-
ued fraction representation of the golden ratio:
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1

1 +
.
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We use the term regular formulas (RFs) for any mathematical expres-
sion that can be encapsulated using a computable expression14, such 
as equation (1).

The act of discovering new RFs is often attributed to profound intui-
tion, such as in the case of Gauss’ ability to see meaningful patterns 
in numerical data that led to the famous prime number theorem and 
new fields of analysis such as elliptic and modular functions. He is even 

famous for saying: “I have the result, but I do not yet know how to get 
it”15, which emphasizes the role of identifying patterns and RFs in data 
as enabling acts of mathematical discovery.

In a different field but a similar manner, Johannes Rydberg’s discov-
ery of his formula of hydrogen spectral lines16 resulted from his analy-
sis of the spectral emission by chemical elements: λ R n n= ( − )−1

H 1
−2

2
−2 , 

where λ is the emission wavelength, RH is the Rydberg constant, and n1 
and n2 are the upper and lower quantum energy levels, respectively. 
This insight, emerging directly from identifying patterns in data, had 
profound implications on quantum mechanics and modern physics.

Unlike measurements in physics and all other sciences, most 
mathematical constants can be calculated to an arbitrary precision 
(number of digits) with an appropriate formula, thus providing an 
absolute ground truth. In this sense, mathematical constants contain 
an unlimited amount of data (for example, the digits in an irrational 
number), which we use as ground truth for finding new RFs. Since the 
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fundamental constants are universal and ubiquitous in their applica-
tions, finding such patterns can reveal new mathematical structures 
with broad implications, for example, the Rogers−Ramanujan con-
tinued fraction (which has implications on modular forms)17. Con-
sequently, having systematic methods to derive new RFs could help 
research in many fields of science.

In this Article, we present a concept of learning mathematical rela-
tions of fundamental constants and provide a list of conjectures found 
using this method. Although the concept can be leveraged for many 
forms of RFs, we demonstrate its potential with equations involving 
polynomial continued fractions (PCFs)18
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where the partial numerators and denominators an,bn are the evalua-
tions (at x = n) of polynomials α x β x x( ), ( ) ∈ ℤ[ ] , respectively. PCFs have 
been of interest to mathematicians for centuries and still are, for exam-
ple, William Broucker’s π representation19 and Zudilin’s work on dif-
ference equations and Catalan’s constant (for example, ref. 5).

One reason we chose to focus on PCFs is their ability to balance 
simplicity and broad implications. Their structure is accessible for 
computer-based exploration using large integer operations, making 
them a good testing-ground for automated conjecturing. At the same 
time, PCFs are related to many special functions and generalize all infi-
nite sums. PCFs also allow us to isolate unique aspects of importance 
to fundamental constants such as testing irrationality and normality6 
using efficient computation methods—see Supplementary Informa-
tion sections D and G. Moreover, PCFs are abundant in many areas of 
mathematics20,21 because they constitute an important special case of 
a general mathematical object: linear recurrence relations with poly-
nomial coefficients. Recurrences of depth 2 correspond to PCFs and 
appear in this form in many problems (PCFs with alternating polyno-
mials, as shown below, correspond to recursion depths >2). The solu-
tions to such recurrences are usually very complex and include special 
functions (for example, hypergeometric functions and the incomplete 
gamma function). For this reason, finding new PCF identities is valuable 
for different mathematical objects, especially when incorporated as 
a part of symbolic calculation programs (such as Maple and Wolfram 
Mathematica). More on PCFs in the Supplementary Information.

We demonstrate our approach by finding identities between a PCF 
and a fundamental constant substituted into a rational function. For 
efficient enumeration and expression aesthetics, we limit ourselves to 
integer polynomials on both sides of the equality. We propose two search 
algorithms: The first algorithm uses a meet-in-the-middle (MITM) tech-
nique, first executed to a relatively small precision to reduce the search 
space and eliminate mismatches. We then increase its precision with a 
higher number of PCF iterations on the remaining matching sequences 
to validate them as conjectured RFs—the algorithm is therefore called 
MITM-RF. The second algorithm uses an optimization-based gradient 
descent (GD) method, which we call Descent&Repel, converging to 
integer lattice points that define conjectured RFs.

Our MITM-RF algorithm was able to produce several novel conjec-
tures that have short proofs, for example:
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These RFs are auto-generated conjectures for mathematical formu-
las of fundamental constants, generated by applying the MITM-RF 
algorithm. These conjectures were proven by contributions from the 
community following the first appearance of our work on the arXiv 
preprint server53 (see Supplementary Information section F). Both 
results for π converge exponentially, and both results for e converge 
super-exponentially. Supplementary Information section A presents 
additional results (Supplementary Tables 1−3) found by our algorithms 
along with their convergence rates.

Our MITM-RF algorithm also produced novel conjectures that are 
currently still unproved:
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Fig. 1 | Conceptual flow of the wider concept of the Ramanujan Machine. 
First, using approaches of pattern learning and generalization, we can generate 
a space of RF conjectures, for example, PCFs. We then apply a search algorithm, 
validate potential conjectures, and remove redundant results. Finally, 

validated results form mathematical conjectures that need to be proven 
analytically, thus closing a complete research endeavour from pattern 
generation to proof, potentially yielding further mathematical insight.
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To the best of our knowledge, these results are previously unknown 
conjectures. ζ refers to the Riemann zeta function, and G refers to the 
Catalan constant. The section ‘Efficient computation and irrationality 
bounds of the Catalan constant’ presents implications of our results 
for the computation of the Catalan constant.

One may wonder whether the conjectures discovered by this work 
are indeed mathematical identities or merely mathematical coinci-
dences that break down once enough digits are calculated. However, 
the method employed in this work makes it fairly unlikely for the con-
jectures to break down. For example, the probability of finding a false 
positive for an enumeration space of 109 with accuracy of 50 digits is 
smaller than 10−40. Our algorithms tested the conjectures for up to 
2,000 digits of accuracy.

Nevertheless, high accuracy will never substitute for a formal 
proof, as there exist mathematical coincidences of RFs that appear 
to accurately represent a constant to a high degree of approxima-
tion despite being fallacies22. We believe and hope that proofs of new 
computer-generated conjectures on fundamental constants will help 
to create mathematical knowledge.

In contrast to the method we present, many known RFs for funda-
mental constants were discovered by conventional proofs, that is, 
sequential logical steps derived from known properties23. In our work, 
we aim to reverse this process, finding new RFs for the fundamental 
constants using their numerical data alone, without any prior knowl-
edge about their mathematical structure (Fig. 1). Each RF may enable 
reverse-engineering of the mathematical structure that produces it. In 
certain cases, where the proof uses new techniques, it may also provide 
insight into the field. Our approach could be especially valuable when 
applied for empirical constants, such as the Feigenbaum constant from 
chaos theory (Table 1), which are derived numerically from simulations 
and have no analytic representation.

Given the success of our approach to finding new RFs for fundamental 
constants, there are additional avenues for more advanced algorithms 
and future research. Inspired by worldwide collaborative efforts in 
mathematics such as the Great Internet Mersenne Prime Search (GIMPS; 
https://www.mersenne.org/), we launched the initiative http://www.
RamanujanMachine.com, dedicated to finding new RFs for funda-
mental constants. The general community can donate computational 
time to find RFs, propose mathematical proofs for conjectured RFs, or 
suggest new algorithms for finding them (Supplementary Informa-
tion section B). Since its inception53, the Ramanujan Machine initiative 
has already yielded fruit, and several of the conjectures posed by our 
algorithms have already been proved (Supplementary Information 
section F).

Related work
The process of mathematical research is complex, nonlinear and often 
leverages abstract mathematical intuition, all of which are difficult 
to express and study thoroughly. Respecting this fact, one may think 
in an oversimplified manner about mathematical research as being 
separated into two main steps: conjecturing and proving (as in Fig. 1).

Although both steps have received some attention in the literature, 
it is the second step that has been studied more extensively in the com-
puter science literature and is known as automated theorem proving 
(ATP)24, which focuses on proving existing conjectures. In ATP, algo-
rithms have already proved many theorems such as the Four Colour 
Theorem8, the Robbins’ problem10, the Kepler Conjecture on the density 
of sphere packing11, a conjectured identity for ζ(4) (see ref. 25), and vari-
ous combinatorial identities9. There are also recent machine learning 
applications for ATP, such as graph neural networks12,13.

Our work focuses on automating the first step of the process, auto-
mated conjecture generation. Early work on automated conjecture 
generation appeared 60 years ago26 and included substantial contribu-
tions such as the Automated Mathematician and EURISKO27–29, which 

envisioned the use of computers for the entire process of scientific 
discovery. Notable work by Fajtlowicz (called GRAFFITI) has found new 
conjectures in graph theory and matrix theory30 by analysing properties 
such as chromatic index and independence number on a large number 
of graphs and deducing general rules. Recent work applied machine 
learning techniques to analyse millions of elliptic curves31 and explore 
their characteristics. Automated conjecture generation has also been 
used as part of a combined approach with ATP32,33, for example, on the 
irrationality measure of π (ref. 4).

A particularly noteworthy algorithm in this context is PSLQ34, which 
was employed to study the Riemann zeta function, finding formulas “by 
a combination of inspired guessing and extensive searching”35. PSLQ 
numerically discovered a new formula for π (which was later proved)36,
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With further manipulation and analysis, this formula gave rise to an 
algorithm that computes strings of binary or base-16 digits of π start-
ing at a given position, without needing to know the preceding digits.

The general approach of using algorithmic and computational tools 
to explore the mathematical universe and discover conjectures wor-
thy of further examination is known in the mathematical literature as 
experimental mathematics. A famous example is the work of Wolfram, 
who has championed experimental-computational methods to inves-
tigate the properties of cellular automata37.

A similar approach for using computer algorithms in mathematical 
research is now developed and applied in physics. Specifically, super-
vised and unsupervised machine learning have been applied to discover 
physical laws from measured data (for example, refs. 38–43).

Our work differs from all of the above in several respects. We present 
an end-to-end automated conjecture generation that can validate con-
jectures to arbitrary precision using numerical data as ground truth and 
allowing for a fully-automatic process that removes redundancy and 
false positives without user input. Our conjectures focus on formulas 
for fundamental constants.

Proposing conjectures is sometimes more important than proving 
them. For this reason, some of the most original mathematicians and 
scientists are known for their famous unsolved conjectures rather than 
for their solutions to other problems, such as Fermat’s last theorem, 

Table 1 | A sample of fundamental constants that are relevant 
targets for our method

Field Name Decimal expansion

Related to 
continued fractions

Lévy’s constant γ 3.275822= …

Khinchin’s constant = …K 2.6854520

Chaos theory First Feigenbaum constant δ 4.669201= …

Second Feigenbaum constant α 2.502907= …

Laplace limit r* 0.662743= …

Number theory Twin prime constant Π 0 . 6601612 = …

Meissel–Mertens constant M 0.261497= …

Landau–Ramanujan constant = …Λ 0.764223

Combinatorics Euler–Mascheroni constant γ 0.577215= …

Golomb–Dickman constant = …λ 0.624329

There are thousands of additional constants for which enough numerical data exist, and our 
method is applicable. For all of these, new RF conjectures will point to deep underlying  
connections. With further improvement in our approach, along with new algorithms provided 
by the community, we expect that more expressions will be found. Note that some constants 
in the table, such as the Feigenbaum constants, have no analytical expression whatsoever, 
and so far can only be computed using numerical simulations. Therefore, having a RF for them 
will reveal a hidden truth not only about the constant but also about the entire field to which it 
relates. A wider list of constants is available in ref. 1.

https://www.mersenne.org/
http://www.RamanujanMachine.com
http://www.RamanujanMachine.com
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Hilbert’s problems, Landau’s problems, and of course the Riemann 
Hypothesis44,45. Maybe the most famous example is Ramanujan, who 
posed dozens of conjectures involving fundamental constants and con-
sidered them to be revelations from his family’s goddess7. Our work aims 
to automate the process of conjecture generation and demonstrate it 
by providing new conjectures for fundamental constants. By analysing 
mathematical relationships of fundamental constants that are aesthetic 
and concise, the Ramanujan Machine can eventually extend the work 
of great mathematicians such as Gauss, Riemann and Ramanujan.

The MITM-RF algorithm
The first algorithm we present searches for a PCF of a given fundamental 
constant c (for example, c = π) of the following form:

γ c
δ c

f α β
( )
( )

= (PCF( , )), (5)i

for a set of four integer-coefficient polynomials (α, β, γ and δ), and a 
given set of functions {fi} (for example, ⋯f x x f x( ) = , ( ) = ,x1 2

1 ). PCF(α, β) 
means the PCF with the partial numerator an = α(n) and denominator 
bn = β(n) defined in equation (2).

As showcased in Fig. 2, we start by enumerating over the two sides 
of equation (5) and successively generate integer polynomials for α, 
β, γ and δ. We calculate the left-hand side (LHS) of each instance up to 
limited precision and store the results in a hash table. We continue by 
evaluating the right-hand side (RHS) and attempt to match each result 
in the hash table, where successful attempts are considered candidate 
solutions. The RHS is calculated with arbitrary-size integers, directly 
using the recurrence formula for the numerators pn and the denomina-
tors qn of the rational approximation of the PCF:

q p

q p a

q a q b q p a p b p

= 0, = 1,

= 1, = ,

= + , = + .

(6)

n n n n n n n n n n

−1 −1

0 0 0

+1 +1 +1 −1 +1 +1 +1 −1

Since the LHS and RHS calculations are performed up to a limited 
precision, some of the candidate solutions are typically false positives, 
eliminated by calculating the RHS and LHS to higher precision in the 
last stage (Fig. 2). See Methods for the algorithm complexity and imple-
mentation details (see code at http://www.RamanujanMachine.com).

Our proposed MITM algorithm discovered previously known PCFs 
and new PCF conjectures for mathematical constants such as ζ(3) (that 
is, the Apéry constant) and the Catalan constant, presented in equa-
tion (4). (Supplementary Information section A provides details of the 
constants for which we ran searches, successful or otherwise). After 
discovering dozens of PCFs, we empirically observed (and later proved, 
Supplementary Information section D) a relationship between the ratio 
of the polynomial order of an and bn, and the formula’s convergence rate 
(Extended Data Fig. 1). Supplementary Information section C provides 
a wider outlook on PCFs.

The Descent&Repel algorithm
We propose a GD optimization method and demonstrate its success in 
finding RFs. Although proved successful, the MITM-RF method is not 
trivially scalable. This issue can be targeted by either a more sophisti-
cated variant or by switching to an optimization-based method, as is 
done by the following algorithm (Fig. 3).

To find integer solutions to equation (5), we write the following con-
strained optimization problem with the loss function ℒ:

γ π
δ π

α β α β γ δ xmin ℒ =
( )
( )

− PCF( , ) where { , , , } ⊂ ℤ[ ]. (7)
α β γ δ, , ,

Solving this optimization problem with GD seems implausible because 
we are only satisfied with exact ℒ = 0 for integer parameters. Non-zero 
ℒ solutions are usually meaningless as mathematical conjectures, as 
they are only approximations.

Nevertheless, we found a feature of ℒ that helped us develop a slightly 
modified GD, which we name Descent&Repel (Fig. 3). Examples of the 
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Fig. 2 | The Meet-In-The-Middle Regular Formula algorithm. The figure 
describes the MITM-RF algorithm that finds PCFs for fundamental constants. 
First, we enumerate the LHS to a low precision (for example, 10 digits) and store 
the results in a hash table. Second, we enumerate over the RHS at low precision 

and search for matches. Finally, the matches are re-evaluated to higher 
precision and compared again, thus eliminating false positives. The final 
results are then presented as new conjectures.

http://www.RamanujanMachine.com
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results appear in Extended Data Table 1. Without the restriction of 
being integers, the zero ℒ minima are not 0-dimensional points but 
rather (d−1)-dimensional manifolds with d being the number of opti-
mization variables. Specifically, in the case plotted in Fig. 3, there are 
d = 2 optimization variables, and therefore a 1-dimensional manifold 
of minima, appearing as bright curves in the maps. This dimensional-
ity of the minima is expected given the definition of the loss function 
ℒ, which poses only a single constraint. Consequently, the GD process 
is expected to result in a solution with ℒ = 0. The high dimension of the 
manifold of minima motivates our approach of adding the repel step 
to the algorithm since most minima have a neighbourhood that con-
tains additional minima. See Methods for the algorithm initialization 
and stages.

We ran the algorithm on several different search spaces (mostly with 
d = 2, Supplementary Information section E). The current implemen-
tation of the algorithm serves as a proof of concept and as a testing 
environment for GD variants. As such, it had not yet been executed 
on large search spaces. The success we had in finding conjectures in 
these limited runs shows the prospects of using this algorithm on larger 
search spaces with different parameter choices.

Irrationality bounds of the Catalan constant
Finding RFs for fundamental constants can have important pros-
pects for proving their intrinsic properties. An example is Apéry’s 
proof that ζ(3) is irrational, which uses a PCF representation3, and led 
to similar proofs for other constants46. Finding fast-converging RFs 
could also provide more efficient ways of computing fundamental 
constants; for example, one of the most efficient historical methods 
of computing π was based on a formula by Ramanujan47. Similarly, the 
fastest-converging expression for the Catalan constant was a PCF by 
Zudilin5 until a relatively recent contribution48. The latter was recently 
used in the y-cruncher algorithm for calculating the record number 

of digits of the Catalan constant. Efficient formulas for calculating 
fundamental constants to high precision are used for checking their 
statistical consistencies and properties, such as normality (the distri-
bution of digits in different integer bases)49.

As a consequence of the MITM-RF results for the Catalan constant, we 
found an infinite family of PCFs for the Catalan constant (see Methods). 
Part of these PCFs have faster convergence rates than the current best 
formula48. Figure 4a summarizes the convergence rates alongside the 
computational effort per term, conveying the comparative advantage 
of the new PCFs we found.

Another important implication for such expressions is their potential 
to help prove the irrationality of the Catalan constant. Each PCF pro-
vides a Diophantine approximation sequence that can be characterized 
by an effective irrationality exponent that quantifies how ‘efficiently’ 
it approximates the constant (see Methods).

A paper from 20035 found the state-of-the-art exponent of the 
Catalan constant to be approximately 0.524. A paper from 201650 
proved this value and presented the better value of about 0.554 as a 
conjecture. These values are now the best exponents available in the 
literature. One of the PCFs we found here has an exponent of around 
0.567, which surpasses all the previous values in the literature, as 
shown in Fig. 4b. Finding an explicit sequence for which the exponent 
is larger than 1 will directly prove irrationality. However, it is not trivial 
to find such a sequence explicitly (see, for example, ref. 51), and thus, 
it is of interest to try to find sequences for which the exponent is as 
large as possible.

Figure 4b summarizes the convergence of the approximation expo-
nent as a function of the number of computed terms. This compari-
son includes the best values in the literature and several of our PCFs 
(detailed in Supplementary Information section G). We write the numer-
ical value of approximation exponent for each of the results in Sup-
plementary Tables 5 and 6. Looking forward, it may well be that the 
automated exploration of PCF Diophantine approximation sequences 
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Fig. 3 | The Descent&Repel algorithm. The figure describes the 
Descent&Repel algorithm that finds RFs for fundamental constants  
by relying on GD optimization. The x and y axes are parameters defining the 
polynomials of the continued fraction (in this case α(n) = n, β(n) = n2 + yn + x; 
see Supplementary Information section E, Supplementary Table 4, and 
Supplementary Fig. 1). The key observation that enables this method is that 
almost all minima have zero loss (ℒ = 0) and appear as (d − 1)-dimensional 
manifolds, where d is the number of optimization variables. Starting with our 

initial conditions (in this example, consisting of 600 points on a vertical line), 
we perform ordinary GD alternated with ‘Coulomb’ repulsion between all the 
points. Finally, we alternate two GD optimizations to reach grid points: towards 
integer points and the minimum curves. Lastly, we check whether any point 
satisfies the equation. The colours indicate the loss ℒ (logarithmic scale): for 
the background, purple indicates larger loss and white indicates zero loss; for 
the points, red indicates larger loss and dark blue indicates zero loss.
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will eventually provide a higher approximation exponent that can lead 
to proving the irrationality of the Catalan constant.

The same approach can also be used with other constants. More gen-
erally, we expect further explorations of PCFs based on the Ramanujan 
Machine to lead to additional advances in Diophantine approxima-
tions and irrationality measures. For example, it could be intriguing to 
look for PCFs for values of the Riemann zeta function at odd integers, 
and specifically ζ(5) (ref. 52), because such PCFs may help prove their 
irrationality and provide more efficient ways of calculating ζ values.

Correspondence with the community
Following the appearance of the initial version of our work on arXiv in 
201953, numerous people ran our algorithms, some found new conjec-
tures, and a few provided proofs for the new formulas. Over the span 
of a few months, proofs for all the original manuscript formulas were 
presented. This led us to expand our search with the MITM-RF algorithm 
and find more intriguing results such as PCFs for ζ(3), π2, and Catalan’s 
constant, most of which are still unproved.

This back-and-forth dynamics between algorithms and mathema-
ticians is the essence of what we believe can be achieved with auto-
matically generated conjectures of fundamental constants. A recent 
example of this successful correspondence is the work of Zeilberger’s 
group54, generalizing and proving part of the conjectures that appeared 
in the earlier arXiv version of our work53 (Supplementary Information 
section F.3). An example from their paper is the elegant formula
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Their method combines the proof as an inherent part of the discovery 
and thus can be viewed as a successful case study of algorithms that 
combine automated conjecture generation and ATP.

A wide range of such identities is likely to be useful in future 
approaches for different math problems, especially in adjacent fields 
(for example, proving the irrationality of Riemann zeta function val-
ues20). More generally, automatically discovered formulas can assist 
further research efforts by enriching the modern ‘integral books’, which 
are software and computing environments such as Maple or Wolfram 
Mathematica. This process provides an elegant example of the symbio-
sis between computer-generated mathematics and human-generated 
mathematics.

Although our work focuses on PCFs, we think that it can be systemati-
cally extended to other space of candidate RF conjectures. We envision 
harvesting the scientific literature (for example, over 1.5 million papers 
on http://arXiv.org) to generalize known formulas and identify new RFs 
using machine learning algorithms such as clustering methods (see, 
for example, ref. 55). The scientific literature provides a strong ground 
truth for candidate RFs, and this method may discover mathematical 
conjectures that go far beyond PCFs.

Outlook on the universality of fundamental constants
Our work provides the groundwork for a more comprehensive study 
into fundamental constants and their underlying mathematical 
structure. Our proposed algorithms found PCFs for the constants π, 
e, Catalan’s constant and ζ(3). Table 1 presents a selection of additional 
fundamental constants of particular interest to our approach. For some 
of them, such as the Feigenbaum constants, no PCF (or any RF) is known. 
Potentially the most interesting constants for further research are 
from fields like number theory (not so ironically, some of them are 
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Fig. 4 | Efficient computation of the Catalan constant with new PCFs. 
Comparison of computational metrics with previous results. a, For each 
formula computing the Catalan constant, the scatter plot shows the 
asymptotic number of terms required per digit of accuracy, relative to the 
computational effort (compute degree: defined as the smallest possible 
polynomial degree that can be used in the calculation, found after 
transforming the PCF into a matrix of balanced degrees). Green hyperbolas 
mark the relative efficiencies. Readers should search ‘Guillera (2019)’ within 
the page http://www.numberworld.org/y-cruncher/internals/formulas.html 

to see this result. b, The convergence of the effective irrationality exponent 
(lower bound on the Liouville–Roth irrationality measure, see Methods) as a 
function of the number of computed terms. The previous best result, first 
found in ref. 5, is presented in dark blue. A conjecture for a better value, from 
ref. 50, is presented by a horizontal orange line. The new PCF marked in green 
surpasses both previous values and yields the new best value for the Catalan 
constant’s approximation exponent. See Supplementary Information section 
G (specifically, Supplementary Tables 5 and 6).
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also named after Ramanujan) and various fields of physics. There, any 
new RF can point to a hidden connection between fields of science. 
We believe it would be particularly interesting to extend our work to 
test RFs that involve several different constants. With such algorithms 
applied to the thousands of fundamental constants in the literature, 
we expect many new RFs to be found.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41586-021-03229-4.
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Methods

Complexity of the MITM-RF algorithm
A naïve enumeration is very computationally intensive with time  
complexity of O(MN), where M and N are the LHS and RHS space size, 
respectively, and space complexity of O(1). In our algorithm, we store the 
LHS in the hash table in order to substantially reduce computation time at 
the expense of space. This makes the algorithm’s time complexity O(M + N)  
and its space complexity O(M). We also implemented another version of 
the algorithm in which the hash table stores the RHS (the PCF results). In 
both cases, the hash table can be saved and reused to reduce the dura-
tion of future enumerations. The main computational bottleneck is the 
enumeration and calculation of the RHS terms (O(N) time complexity). 
By parallelizing the process on C central processing unit (CPU) cores, 
we are able to speed up the process, and the time complexity drops to 
O(N/C). Moreover, we decrease the space needed in the memory by 
using a Bloom filter to store the LHS hash-table keys (instead of keeping 
the whole hash table in memory). Using a Bloom filter decreases the 
space by a factor of about 100 during the RHS enumeration.

Our code handles edge cases, like discarding PCFs that provide rep-
resentations of rational numbers by skipping β polynomials with roots 
at natural numbers. For the full implementation of our MITM-RF algo-
rithm, see the code on http://www.RamanujanMachine.com.

Generalizations of the MITM-RF algorithm
We also generalized the algorithm to allow for α and β to be integer 
sequences generated by any countable parametric function. For exam-
ple, α and β can be interlaced sequences, that is, they may consist of 
multiple (alternating) integer polynomials. For example, in the case of 
just two interlaced sequences, odd values of n are equal to one polyno-
mial, and even values of n are equal to a different polynomial.

Seeing how successful our algorithm was despite its relative simplic-
ity, we believe there is still ample room for new results. By leveraging 
more sophisticated algorithms, other results will follow, thus discover-
ing hidden truths about even more fundamental constants, perhaps 
with formulas that are more complex than the PCFs used in this work.

Stages of the Descent&Repel algorithm
We chose the optimization problem’s variables as the coefficients of 
the α, β, γ, δ polynomials in equation (7). The algorithm is initialized 
with a large set of points. In the specific examples we present, all initial 
conditions were set on a line, as shown in Fig. 3.

The algorithm is then constructed of three main stages: GD, ‘Repel’, 
and Lattice GD. We iterate between the first two stages and then perform 
the third stage once to converge to a possible solution.

(1) GD. We perform a standard GD separately for each point xi, which 
is a d-dimensional vector. The loss function ℒ is defined in equation (7), 
and thus, for each point xi, we define its next iteration t + 1 as 
x x μ= − ∇ℒ|i
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with another small step size ν that accounts for the strength of the 
repulsion. The ‘repel’ mechanism is used to increase the search space 
to more effectively cover the space of integer parameters and thus 
increase the probability of finding a match. We tune the repulsion 
strength heuristically.

(3) Lattice GD. We enforce the constraint of integer results by alter-
nating the GD optimization between the original loss ℒ of equation (7)  
and a different loss function ℒI that scales like the square of the  

difference between the value xi and its closest integer (round), 
x xℒ = ‖round( ) − ‖i iI . In cases where this stage converges (being a heu-

ristic algorithm, this is not guaranteed), the method can find points 
that satisfy ℒ = ℒI = 0 for both losses, meaning an integer solution to 
our optimization problem.

An infinite family of PCFs for the Catalan constant
The PCF results for the Catalan constant in Supplementary Table 3 
can be generalized to an infinite family of PCFs. This generalization 
revealed an underlying mathematical structure related to the Catalan 
constant (there is now active research regarding additional algebraic 
properties of this mathematical structure, to be presented in a separate 
publication). We produce eight examples of formulas resulting from 
this generalization and present them in Supplementary Information 
section G, in Supplementary Tables 5 and 6. Interestingly, part of the 
PCF results can be expressed as infinite sums (Supplementary Table 
5). However, not every PCF can be written as a sum, as is the case in the 
expressions in Supplementary Table 6, which we found to have a faster 
convergence rate than the state of the art48. Importantly, the complex-
ity of these expressions may help to demonstrate how the approach 
proposed in this work can handle complexity that may be difficult to 
address without computer algorithms (we show here specific examples 
of polynomials of order >20 with coefficients that have >30 digits).

The irrationality measure of a constant and its lower bound
The irrationality measure of x, sometimes called the approximation 
exponent or the Liouville–Roth constant6, is defined as the largest 
μ = μ(x) for which there exists a sequence of rational numbers pn/qn 
that satisfy x p q q0 < | − / | <n n

μ− . For every x, μ(x) is always either exactly 
1 when x is rational or ≥2 when x is irrational.

We can define the effective irrationality exponent of a sequence 
as the largest (supremum) that satisfies the inequality. Sequences of 
this kind are called Diophantine approximations6. Every PCF we find is 
such a sequence of rational numbers and it has an effective irrational-
ity exponent μ′. Generally, each explicit Diophantine approximation 

sequence gives a μ′ that can be calculated by μ′ = lim inf
n

x p q
q p q→+∞

log(| − / |)
log( / gcd( , ))

n n

n n n
 , 

where gcd indicates the greatest common divisor. Each μ′ provides a 
lower bound for the irrationality measure μ(x) of the value x to which 
the sequence converges.

However, finding an explicit sequence from which the value of μ(x) 
can be extracted is a challenge. This challenge motivated the search for 
such sequences for important fundamental constants, with the goal of 
extracting bounds on their value of μ(x). When a constant is not known 
to be rational, the sequences all still have μ′ ≤ 1, as in the case of the 
Catalan constant. Then, finding an explicit sequence for which μ′ > 1 
will directly prove irrationality. In principle, there must be a sequence 
with μ′ = 1 or μ′ ≥ 2. However, it is not trivial to find such a sequence 
explicitly51,56,57, and thus, it is of interest to try to find sequences pn/qn 
for which μ′ is as large as possible.

An infinite family of PCFs with complex variables
Example outcomes of the mathematics−algorithm correspondence in 
our work are aesthetic generalizations that we found based on results 
of the Ramanujan Machine algorithms. One example is the following 
PCF with a complex variable:
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This PCF was found as a conjecture—by generalizing several automati-
cally generated conjectures (specific integer values for z), generated 
by the MITM-RF algorithm. Like many other results involving π, it can 

http://www.RamanujanMachine.com


be proved using generalized hypergeometric functions. The proof is 
quite straightforward, provided one finds certain identities involving 
ratios of generalized hypergeometric functions, presented in Supple-
mentary Information section F.2.1 along with other proofs and related 
information. It remains to be seen whether related methods would be 
able to prove the unproved conjectures in Supplementary Tables 1−3 
of Supplementary Information section A. The above family of PCFs 
is brought here as an example of how automatically generated con-
jectures can be generalized to a wider conjecture and later a proof. 
We believe that this process could be used more widely with future 
results of the Ramanujan Machine, so that automatically generated 
conjectures on fundamental constants become a catalyst for math-
ematical research. For an extended discussion, see Supplementary 
Information section B.

Data availability
All the results of the Ramanujan Machine project are shared in the paper, 
with newer updates appearing periodically on the project website.

Code availability
Code is available at: http://www.ramanujanmachine.com/ and the 
GitHub links therein.
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Extended Data Fig. 1 | Convergence rates of the PCFs. The plots present  
the absolute difference between the PCF value and the corresponding 
fundamental constant (that is, the error) versus the number of terms calculated 
in the PCF. On the left are PCFs with exponential/super-exponential 

convergence rates, and on the right are PCFs that converge polynomially.  
The majority of previously known PCFs for π converge polynomially, whereas 
all of our newly found results converge exponentially.
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	Generating conjectures on fundamental constants with the Ramanujan Machine

	Related work

	The MITM-RF algorithm

	The Descent&Repel algorithm

	Irrationality bounds of the Catalan constant

	Correspondence with the community

	Outlook on the universality of fundamental constants

	Online content

	Fig. 1 Conceptual flow of the wider concept of the Ramanujan Machine.
	Fig. 2 The Meet-In-The-Middle Regular Formula algorithm.
	Fig. 3 The Descent&Repel algorithm.
	Fig. 4 Efficient computation of the Catalan constant with new PCFs.
	Extended Data Fig. 1 Convergence rates of the PCFs.
	Table 1 A sample of fundamental constants that are relevant targets for our method.
	Extended Data Table 1 RFs for π and e found in a proof-of-concept run of the Descent&Repel algorithm.




